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Abstract     55 

The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil 56 

Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness 57 

temperature observations into the NASA Catchment land surface model.  The L4_SM product is 58 

available from 31 March 2015 to present (within 3 days from real-time) and provides 3-hourly, 59 

global, 9-km resolution estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and 60 

land surface conditions.  This study presents an overview of the L4_SM algorithm, validation 61 

approach, and product assessment versus in situ measurements.  Core validation sites provide 62 

spatially averaged surface (root-zone) soil moisture measurements for 43 (17) “reference pixels” 63 

at 9-km and 36-km grid-cell scales located in 17 (7) distinct watersheds.  Sparse networks 64 

provide point-scale measurements of surface (root-zone) soil moisture at 406 (311) locations.  65 

Core validation site results indicate that the L4_SM product meets its soil moisture accuracy 66 

requirement, specified as an unbiased RMSE (ubRMSE, or standard deviation of the error) of 67 

0.04 m3 m-3 or better.  The ubRMSE for L4_SM surface (root-zone) soil moisture is 0.038 m3 m-3 68 

(0.030 m3 m-3) at the 9-km scale and 0.035 m3 m-3 (0.026 m3 m-3) at the 36-km scale.  The 69 

L4_SM estimates improve (significantly at the 5% level for surface soil moisture) over model-70 

only estimates, which do not benefit from the assimilation of SMAP brightness temperature 71 

observations and have a 9-km surface (root-zone) ubRMSE of 0.042 m3 m-3 (0.032 m3 m-3).  72 

Time series correlations exhibit similar relative performance.  The sparse network results 73 

corroborate these findings over a greater variety of climate and land cover conditions.    74 

 75 

     76 

77 
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1. Introduction  78 

The Soil Moisture Active Passive (SMAP) mission has been providing global observations of L-79 

band (1.4 GHz) passive microwave brightness temperature since 31 March 2015 at about 40-km 80 

resolution from a 685-km, near-polar, sun-synchronous orbit (Entekhabi et al. 2010a; Piepmeier 81 

et al. 2017).  These observations are highly sensitive to surface soil moisture and temperature, 82 

which impact the land surface water and energy balance through, for example, the partitioning of 83 

rainfall into runoff and infiltration, and the partitioning of net radiation into latent and sensible 84 

heat fluxes.  Thus, SMAP observations can be used to enhance our understanding of processes 85 

that link the water, energy, and nutrient cycles, and, ultimately, to extend the capabilities of 86 

current weather and climate prediction models (Entekhabi et al. 2014).   87 

 88 

L-band brightness temperature observations and surface soil moisture retrievals similar to those 89 

from SMAP are also available from the Soil Moisture Ocean Salinity (SMOS) mission, launched 90 

in November 2009 (Kerr et al. 2010; De Lannoy et al. 2015).  Moreover, surface soil moisture 91 

retrievals are available from a variety of past and current, active and passive satellite sensors, 92 

including the Advanced Microwave Scanning Radiometers (Mladenova et al. 2014; Parinussa et 93 

al. 2015) and the Advanced Scatterometer (Wagner et al. 2013).  Because the latter instruments 94 

take measurements at C- and/or X-band (i.e., at frequencies higher than L-band), they provide 95 

observations that have slightly higher spatial resolution but are more sensitive to vegetation and 96 

thus less sensitive to soil conditions than SMOS and SMAP, resulting in noisier and less accurate 97 

soil moisture retrievals (Kerr et al. 2016).  In addition to satellite retrievals, global soil moisture 98 

data are also available from reanalysis products (Saha et al. 2010; Dee et al. 2011; Gelaro et al. 99 

2017) and operational numerical weather prediction systems (de Rosnay et al. 2013; Lucchesi 100 
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2013a).  Some of these model-based products assimilate surface observations to improve the 101 

quality of the soil moisture estimates.  For example, the SM-DAS-2 product (Albergel et al. 102 

2012) assimilates ASCAT surface soil moisture retrievals and screen-level air temperature and 103 

humidity measurements.  Furthermore, precipitation observations are used in several reanalysis 104 

products, including the Climate Forecasting System Reanalysis (Saha et al. 2010), MERRA-105 

Land (Reichle et al. 2011), ERA-Interim/Land (Balsamo et al. 2015), and MERRA-2 (Reichle et 106 

al. 2017a,b).   107 

 108 

The SMAP Level-4 Surface and Root-Zone Soil Moisture (L4_SM) product is generated using a 109 

land data assimilation system that combines the advantages of space-borne L-band brightness 110 

temperature measurements, precipitation observations, and land surface modeling (section 2).  111 

The land model’s key strength is its reliance on conservation principles for water (converting 112 

precipitation inputs into evaporation, runoff, and storage change) and energy (converting 113 

incident radiation into outgoing radiation, latent heat flux, sensible heat flux, storage change, and 114 

other miscellaneous terms).  Given realistic forcing data, these conservation principles ensure at 115 

least some first-order reliability in the simulation products, which are then further corrected 116 

through the assimilation of SMAP brightness temperature observations.  117 

 118 

The L4_SM assimilation system provides two major and invaluable benefits for soil moisture 119 

estimation.  First, the system facilitates complete coverage in space and time (as opposed to just 120 

the times and locations of satellite overpasses).  Second, the embedded land model provides a 121 

means for producing soil moisture estimates at levels below the ~0-5 cm surface layer that is 122 

directly sampled by the satellite instrument.  By design, the L4_SM surface and deeper layer soil 123 
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moisture estimates are consistent with the available SMAP satellite observations.  That is, during 124 

the course of the data assimilation process, the subsurface transport formulations in the land 125 

model (along with the subsurface assimilation updates) effectively propagate the surface soil 126 

moisture and temperature information that is contained in the SMAP brightness temperatures 127 

into the deeper soil levels.  The L4_SM product thus facilitates the use of SMAP data in 128 

applications that require complete spatio-temporal coverage and/or knowledge of deeper-layer 129 

soil moisture.  The latter is particularly relevant for drought monitoring, water resource 130 

management, and sub-seasonal to seasonal climate forecasting. 131 

 132 

The SMAP L4_SM product is available every three hours on a global grid with 9-km spacing, 133 

thereby interpolating and extrapolating the coarser-scale (~40 km) SMAP observations in time 134 

and in space (both horizontally and vertically).  The product is published within about 3 days 135 

from the time of observation, with the latency primarily dictated by the availability of the gauge-136 

based precipitation product used to drive the land model (Reichle and Liu 2014).   137 

 138 

The main objective of this study is to assess the quality of the L4_SM soil moisture and 139 

temperature estimates versus in situ measurements.  In the following, we describe the L4_SM 140 

algorithm and product (section 2), discuss our validation approach (section 3), evaluate the 141 

L4_SM product against in situ measurements (section 4), and provide a summary and 142 

conclusions (section 5).  A companion paper (Reichle et al. 2017c) assesses the internal 143 

diagnostics of the L4_SM algorithm, including the observation-minus-forecast residuals and the 144 

analysis increments.  Their key findings, updated from (Reichle et al. 2016a), confirm that the 145 
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L4_SM analysis is unbiased and produces realistic soil moisture and soil temperature increments 146 

that result in spatially consistent soil moisture and temperature analysis fields. 147 

 148 

 149 

 150 

 151 

 152 

153 
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2. L4_SM Algorithm and Data Product  154 

Reichle et al. (2014) and De Lannoy and Reichle (2016a,b) provide a detailed description of the 155 

Goddard Earth Observing System, version 5 (GEOS-5), land data assimilation system (LDAS), 156 

which forms the basis of the L4_SM algorithm.  Here, we briefly summarize their discussion, 157 

highlight key features of the L4_SM system, and point out differences between the L4_SM 158 

algorithm and the SMOS assimilation described in (De Lannoy and Reichle 2016a,b).   159 

 160 

a. Overview 161 

The L4_SM algorithm, shown schematically in Figure 1, is a customized version of the 162 

ensemble-based GEOS-5 LDAS built around the GEOS-5 Catchment Land Surface Model 163 

(hereinafter “Catchment model”; Koster et al. 2000; Ducharne et al. 2000).  The primary drivers 164 

of this system are the SMAP L1C_TB brightness temperature observations (section 2d) and the 165 

surface meteorological forcing data from the GEOS-5 atmospheric assimilation system, 166 

corrected with precipitation observations (section 2b).  The SMAP brightness temperature 167 

observations are merged with the model estimates using a spatially distributed ensemble Kalman 168 

filter (EnKF; section 2d).  Briefly, the L4_SM algorithm interpolates and extrapolates the 169 

information from the SMAP observations and the model estimates in time and in space, taking 170 

into consideration the relative uncertainties of each; the L4_SM data product represents the 171 

merged information.      172 

 173 

The L4_SM data are generated and distributed on the global, cylindrical, 9-km Equal-Area 174 

Scalable Earth, version 2 (EASEv2) grid (Brodzik et al. 2012).  The L4_SM outputs include soil 175 

moisture estimates for the “surface” (0-5 cm), “root-zone” (0-100 cm) and “profile” (0 cm to 176 
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depth of bedrock) layers.  A single “root-zone” depth was chosen in the modeling system to 177 

make the SMAP product more straightforward; in nature, the depths tapped by roots vary with 178 

vegetation type, soil type, and other environmental factors (Jackson et al. 1996).  Along with soil 179 

moisture, a large number of related land surface variables are also available in the L4_SM 180 

product, including soil temperature, snow mass, land surface fluxes, surface meteorological 181 

forcing data, assimilation diagnostics, and land model parameters.  L4_SM surface soil 182 

temperature estimates are for the 0-10 cm layer except for tropical (broadleaf evergreen) forests, 183 

which are not considered here.  The L4_SM soil temperature and snow estimates can be used to 184 

screen or flag the L4_SM soil moisture output for times and locations with frozen or snow-185 

covered ground.   186 

 187 

The generation of the L4_SM product involves three basic time scales: (i) the land model 188 

computational time step of 7.5 min, (ii) the 3-hour EnKF analysis update time step, and (iii) the 189 

3-hour reporting (or output) time step for the published instantaneous and time-average output 190 

fields.  The available SMAP brightness temperature observations are assimilated in an EnKF 191 

analysis update step at the nearest 3-hourly analysis time (0z, 3z, …, and 21z).   The latest 192 

L4_SM data are generated operationally once per day by the NASA Global Modeling and 193 

Assimilation Office and then automatically delivered to the National Snow and Ice Data Center 194 

(NSIDC), where they become available to the public almost immediately. 195 

 196 

Here, we use L4_SM Version 2 data (Science Version ID: Vv2030) for the period from April 197 

2015 to November 2016.  Specifically, we use 3-hourly, instantaneous “analysis” soil moisture 198 

and soil temperature fields from the “analysis update” files (Reichle et al. 2016b) and time-199 
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invariant land model parameters (including soil porosity and wilting point) from the “land-200 

model-constants” file (Reichle et al. 2016c).  Note that 3-hourly time-average soil moisture and 201 

many other land surface fields are provided in the “geophysical” files (Reichle et al. 2016d).  See 202 

(Reichle et al. 2015a) and the NSIDC website (https://nsidc.org/data/smap/) for complete lists of 203 

the available data fields and further details about data product specifications. 204 

 205 

b. Modeling system 206 

In the Catchment model, the vertical character of soil moisture for each grid cell is determined (i) 207 

by the spatially varying equilibrium profile (defined by a balance of gravity and capillary forces) 208 

from the surface to the spatially (horizontally and vertically) varying water table (related to the 209 

model’s “catchment deficit” prognostic variable) and (ii) by two additional model prognostic 210 

variables that describe the average deviations from the equilibrium profiles in the 0-100 cm root-211 

zone layer (“root-zone excess”) and in the 0-5 cm surface layer (“surface excess”).  The 212 

volumetric soil moisture estimates provided in the L4_SM product are diagnosed from these 213 

three model prognostic variables.     214 

 215 

The Catchment model differs from traditional, layer-based models by including an explicit 216 

treatment of the spatial variation of soil water and water table depth within each 9-km grid cell 217 

based on the statistics of the catchment topography.  This spatial variation enters into the 218 

calculation of moisture diffusion between the root-zone and deeper soil moisture storage.  The 219 

treatment of spatial heterogeneity also allows for the diagnostic separation of each grid cell into 220 

“saturated”, “unsaturated”, and “wilting” sub-grid areas whose sizes vary dynamically.  The 221 

surface energy balance is computed separately for each sub-grid area using physics specific to its 222 
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corresponding hydrological regime.  For example, transpiration may be water-limited in the 223 

“unsaturated” sub-grid area while it is energy-limited in the “saturated” sub-grid area.  This 224 

entails the monitoring of independent prognostic surface (“skin”) temperature variables for each 225 

sub-grid area, which in turn interact with an underlying, six-layer heat diffusion model for soil 226 

temperature that is common to all three sub-grid areas.  A three-layer snow model component 227 

describes the state of the snow pack in terms of snow water equivalent, snow depth, and snow 228 

heat content (Stieglitz et al. 2001).  229 

 230 

The Catchment model version and parameters of the (Version 2) L4_SM system match those of 231 

MERRA-2 (Reichle et al. 2017b; their Table 2) except for the following four differences: (i) the 232 

L4_SM soil hydraulic parameters are based on the pedotransfer functions of Wösten et al. (2001) 233 

applied to soil textures from the Harmonized World Soil Database (version 1.21) and the State 234 

Soil Geographic (STATSGO2) project (labeled “REV” in De Lannoy et al. 2014b); (ii) the 235 

WEMIN snow parameter, which governs the model’s snow depletion curve, is set to 13 kg m-2 236 

(Reichle et al. 2017b); (iii) the leaf area index is based on a merger of data from the Moderate-237 

resolution Imaging Spectroradiometer (MODIS) and the GEOLAND product (Mahanama et al. 238 

2015); and (iv) the surface turbulence scheme is that of Louis (1979).  For further details see De 239 

Lannoy and Reichle (2016a; their section 2b). 240 

 241 

The observation-minus-forecast brightness temperature residuals needed in the soil moisture 242 

analysis (section 2d) are computed by converting the Catchment model soil moisture and 243 

temperature estimates into estimates of L-band brightness temperatures using a zero-order “tau-244 

omega” radiative transfer model (RTM; De Lannoy et al. 2013).  Select RTM input parameters, 245 
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including the microwave surface roughness, vegetation structure parameter, and scattering 246 

albedo, were calibrated prior to the SMAP launch using multi-angular L-band brightness 247 

temperature observations from SMOS (De Lannoy et al. 2014a).  This calibration ensured that 248 

the long-term mean and variance of the modeled brightness temperatures match those of SMOS.  249 

Residual seasonal biases are addressed through rescaling (section 2d). 250 

 251 

The Catchment model is driven with surface meteorological forcing data from the GEOS-5 252 

forward-processing (FP) system at 0.25°×0.3125° (latitude × longitude) resolution (GEOS-5.13.0 253 

prior to 1 May 2015, then GEOS-5.13.1 until 24 January 2017, and GEOS-5.16 thereafter; 254 

Lucchesi 2013a).  The GEOS-5 precipitation data are corrected with gauge-based precipitation 255 

observations from the NOAA Climate Prediction Center Unified (CPCU; Xie et al. 2007; Chen 256 

et al. 2008) product (Figure 1).  The CPCU data are scaled to the climatology of the Global 257 

Precipitation Climatology Project, version 2.2 (GPCPv2.2; Adler et al. 2003; Huffman et al. 258 

2009) pentad precipitation product.  The precipitation corrections are applied in full within 42.5° 259 

latitude from the Equator except in Africa, where no corrections are applied because too few 260 

gauges are available there.  Between 42.5° and 62.5° latitude (in the Northern and Southern 261 

Hemispheres), the precipitation corrections are linearly tapered between full corrections (at 42.5° 262 

latitude) and no corrections (at 62.5° latitude).  Poleward of 62.5° latitude, the model is forced 263 

with the uncorrected GEOS-5 FP precipitation.  See Reichle and Liu (2014) and Reichle et al. 264 

(2017a) for further details on the precipitation correction algorithm.   265 

 266 

267 
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c. Nature Run (NRv4) simulation 268 

A longer-term, model-only simulation termed the Nature Run, version 4 (NRv4), was conducted 269 

for the period from 2001 through present.  NRv4 is a single-member, unperturbed simulation 270 

using the Catchment model version of the L4_SM algorithm on the same 9-km EASEv2 grid.  271 

Through 2013, the model is driven with surface meteorological forcing from the GEOS-5.9.1 272 

forward-processing for instrument teams (FP-IT) product at 0.5°×0.625° (latitude × longitude) 273 

resolution (Lucchesi 2013b).  Thereafter, forcing is from the GEOS-5 FP product at 274 

0.25°×0.3125° resolution (GEOS-5.11.0 prior to 1 Aug 2014, as for L4_SM thereafter).  The 275 

precipitation corrections used for NRv4 are the same as for the L4_SM product.   276 

 277 

The NRv4 simulation plays three roles in this study.  First, the NRv4 simulation provides initial 278 

conditions for the ensemble simulation required to estimate the brightness temperature rescaling 279 

parameters, which in turn provides the ensemble initial conditions for the L4_SM simulation 280 

starting 31 March 2015 at 0z.  (NRv4 was itself spun up for 15 years.)  Second, the NRv4 281 

simulation provides the multi-year climatological information needed to (i) calibrate the L4_SM 282 

RTM parameters, (ii) determine the parameters that convert L4_SM root-zone and profile soil 283 

moisture from volumetric to percentile units, and (iii) calibrate the Level-4 Carbon algorithm 284 

(Jones et al. 2017).  Third, the NRv4 outputs provide a model-only reference skill against which 285 

the impact of the SMAP observations on the skill of the L4_SM product can be measured 286 

(section 4).  287 

 288 

289 



 14 

d. Assimilation of SMAP brightness temperature observations 290 

The Version 2 L4_SM algorithm assimilates horizontally (H) and vertically (V) polarized SMAP 291 

brightness temperature observations from the Version 3 SMAP L1C_TB product (Chan et al. 292 

2016a) after averaging the fore- and aft-looking measurements provided in the L1C_TB product 293 

on their native 36-km EASEv2 grid.  Brightness temperatures from the ascending (~6pm Equator 294 

crossing) and descending (~6am Equator crossing) half-orbits are assimilated.  The Version 2 295 

L4_SM algorithm does not assimilate data products that are based on the SMAP radar, which 296 

failed on 7 July 2015.    297 

 298 

The ensemble-based L4_SM data assimilation algorithm is shown schematically in Figure 1 of 299 

De Lannoy and Reichle (2016b), but note that for the L4_SM system discussed here the model is 300 

on the 9-km grid and the assimilated SMAP observations are only available for a single, 40° 301 

incidence angle.  The EnKF updates in the L4_SM algorithm are spatially distributed in the sense 302 

that all observations within a radius of 1.25° impact the analysis at a given 9-km grid cell (De 303 

Lannoy and Reichle 2016b; their section 3.1).  The weight of an observation-minus-forecast 304 

residual towards the soil moisture (and temperature) increments at a given 9-km grid cell is 305 

proportional to the modeled error correlations between the brightness temperature at the 306 

observation location and the soil moisture (and temperature) at the location of the increment.  307 

This correlation-based weight typically decays with increasing distance of the observation from 308 

the location of the increment.  The L4_SM system uses 24 ensemble members.  The perturbation 309 

parameters for the model forcing and prognostic variables match those of De Lannoy and 310 

Reichle (2016a; their Table 2) except that the spatial correlation scale for the model prognostics 311 

perturbations is set to 0.3° in the L4_SM system.  312 
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 313 

Seasonally varying bias in the modeled brightness temperatures is addressed prior to assimilation 314 

by converting the observations and model forecast brightness temperatures into anomalies from 315 

their respective long-term mean seasonal cycles.  Since the brightness temperature is strongly 316 

impacted by the surface temperature and the RTM parameters, this is done separately for each 317 

36-km grid cell, polarization, and orbit direction (i.e., time-of-day).  For details, see De Lannoy 318 

and Reichle (2016a; their section 3b and Figures 1 and 2).  For the Version 2 L4_SM system, the 319 

mean seasonal cycles for the assimilated SMAP brightness temperatures were estimated from 320 

SMOS (version 5) observations for the period July 2010 to June 2014, after interpolating the 321 

SMOS data to the 40° SMAP incidence angle (De Lannoy et al. 2015).  The mean seasonal 322 

cycles for the modeled brightness temperatures were computed from sub-sampled model output 323 

(at the times and locations of SMOS overpasses), generated with the ensemble L4_SM modeling 324 

system using surface meteorological forcing as for NRv4 (section 2c).   325 

 326 

Only SMAP brightness temperature observations deemed to be of good quality are assimilated 327 

(that is, the lowest bit of the L1C_TB quality flag must equal zero).  Moreover, observations that 328 

fall outside the natural range between 100 K and 320 K are excluded from the assimilation.  329 

Observations are further screened based on the modeled soil temperature (must be greater than 330 

273.35 K) and snow mass (must be less than 10-4 kg m-2) to exclude times and locations with 331 

frozen or snow-covered soil conditions, for which the RTM is not valid.  Finally, the (hourly) 332 

precipitation rate at the observation time and location must be less than 2 mm h-1 to minimize the 333 

detrimental impact of standing water on the analysis.  These model-based conditions must be 334 

satisfied for all 9-km grid cells within a radius of 40 km from the center point of the observation. 335 
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 336 

The total brightness temperature observation error standard deviation is set to a constant value of 337 

4 K.  This error includes the instrument error (~1.3 K; Piepmeier et al. 2017) and the much larger 338 

representativeness error (~3.8 K).  The latter consists of all errors associated with the observation 339 

operator, including errors in the approximation of the footprint of the satellite observations as 340 

well as errors in the RTM-based conversion of the model state vector into brightness 341 

temperatures.  Since for a given brightness temperature observation only about 50 percent of the 342 

signal originates from a circle with a radius of 20 km, we assume an isotropic spatial correlation 343 

length for the observation error of 0.25°.  Observation errors of H- and V-polarization brightness 344 

temperatures are assumed to be uncorrelated, even though this assumption is likely wrong for the 345 

representativeness error component. The estimates for the observation and model error 346 

parameters used in the L4_SM system are similar to those of De Lannoy and Reichle (2016a,b) 347 

and are motivated by the positive results obtained with the assimilation of SMOS observations.  348 

Results presented below demonstrate that the assimilation of SMAP data with these error settings 349 

also produces skill enhancements.  Further refinement of the error parameters may lead to 350 

additional skill improvements but is left for future work. 351 

 352 

 353 

 354 

 355 

 356 

 357 

358 
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3. Validation Approach and Measurements      359 

The L4_SM product is primarily validated through comparison with independent in situ 360 

measurements (section 4).  Suitable measurements fall into two main categories: (i) For a limited 361 

set of climate and land cover conditions, “core validation site” measurements provide accurate 362 

estimates of soil moisture at the 9-km or 36-km scales of the model and satellite estimates 363 

(section 3b).  (ii) For a much wider range of conditions, “sparse network” measurements provide 364 

soil moisture estimates at a single, point-scale location within a 9-km model grid cell (section 365 

3c).  366 

 367 

a. L4_SM accuracy requirement, validation metrics, and processing of in situ measurements 368 

The accuracy requirement for the L4_SM surface and root-zone soil moisture estimates is that 369 

their average unbiased RMSE (ubRMSE) versus in situ measurements must be less than 0.04 m3 370 

m-3 (excluding regions of snow and ice, frozen ground, mountainous topography, open water, 371 

urban areas, and vegetation with water content greater than 5 kg m-2).  The ubRMSE is the 372 

RMSE computed after removing the long-term mean bias from the data, also referred to as the 373 

standard deviation of the error (Entekhabi et al. 2010b; Reichle et al. 2015b, their Appendix A).  374 

The meeting of the requirement is verified by comparing the L4_SM estimates to the 9-km grid-375 

cell scale in situ measurements from the core validation sites (section 3b).   376 

 377 

In addition to the ubRMSE, we also determine the time series correlation coefficient R and the 378 

bias.  The latter is computed as the mean of the differences between the L4_SM (or NRv4) 379 

estimates and the in situ measurements (that is, estimates minus measurements).  Metrics are 380 

computed wherever suitable in situ measurements are available, including for densely vegetated 381 
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or topographically complex areas outside of the limited geographic region for which the 0.04 m3 382 

m-3 validation criterion applies.  Metrics are computed using 3-hourly data for the period 1 April 383 

2015 to 31 March 2017 if at least 480 data points are available.   All in situ measurements used 384 

here are subjected to extensive automated and manual quality control procedures following Liu 385 

et al. (2011), De Lannoy et al. (2014b), Entekhabi et al. (2014), and Reichle et al. (2015b; their 386 

Appendix C) to remove spikes, temporal inhomogeneities, oscillations, and other artifacts 387 

commonly seen in automated measurements.  Moreover, we exclude times when the soil 388 

temperature is below 4°C or when the soil is partially or fully snow covered.   389 

   390 

Surface soil moisture and temperature are validated against measurements from the uppermost 391 

sensor (typically at ~5 cm depth, see below).  Root-zone soil moisture is validated against 392 

vertical averages of in situ measurements using weights that are proportional to the spacing of 393 

the sensor depths within the 0-100 cm layer (see below).  In all cases, the deepest sensors used 394 

here are weighted most strongly.  Vertical averages are only computed if all sensors within a 395 

given profile provide measurements that pass quality control. 396 

 397 

For each statistic, we also computed 95% confidence intervals that take into account temporal 398 

autocorrelation in the time series (De Lannoy and Reichle 2016a; their section 4b).  The metrics 399 

provided here are conservative skill estimates because they ignore errors in the in situ 400 

measurements.  Triple Collocation techniques could be used to correct for such errors (Chen et 401 

al. 2017) but are not considered here.  In any case, the relative performance of the L4_SM and 402 

NRv4 estimates does not depend on the use of Triple Collocation approaches. 403 

 404 

405 
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b. Core validation site measurements  406 

Core validation sites have locally dense sensor networks that provide accurate soil moisture and 407 

soil temperature measurements at the grid-cell scale of the L4_SM product.  For any given core 408 

validation site, however, the spatial distribution of the in situ sensors is typically not aligned with 409 

the grid cells of the standard EASEv2 grid.  Therefore, we defined custom “shifted” grid cells (or 410 

“reference pixels”) that better exploit the spatial coverage of the in situ measurements at each 411 

site, but that do not necessarily align with the standard EASEv2 grid (for examples, see Figure 4 412 

of Colliander et al. 2017).  The grid-cell scale measurements are then computed as the weighted 413 

average of the contributing sensor measurements using Thiessen polygons or, if available, 414 

custom upscaling functions derived from intensive field campaigns (Colliander et al. 2017; their 415 

Figure 7).   416 

 417 

A core validation site may provide in situ measurements for one or more 9-km and/or 36-km 418 

reference pixels.  Core validation site reference pixels must satisfy a number of criteria, 419 

including verification through an intensive field campaign and provision of a minimum number 420 

and representative distribution of sensors within the reference pixel (Reichle et al. 2015b, their 421 

section 6.2; Colliander et al. 2017).  For the comparison against the in situ measurements, the 9-422 

km L4_SM estimates are interpolated bi-linearly to the location of the 9-km reference pixels and 423 

are aggregated (using area-weighted averaging) for comparison to the 36-km reference pixel 424 

estimates.  A repeat of the assessment using nearest-neighbor interpolation resulted in skill 425 

differences that were much smaller than the typical differences between the L4_SM and NRv4 426 

skill metrics (not shown).     427 

 428 
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Table 1 lists the core validation sites and reference pixels used here consisting of a total of 43 429 

reference pixels from 19 different core validation sites.  Table 2 breaks down the number of core 430 

validation sites and reference pixels with suitable quantities of measurements by variable and by 431 

horizontal scale.  Surface soil moisture measurements are available for all 43 reference pixels.  432 

Root-zone soil moisture measurements are available for only 17 reference pixels. Root-zone soil 433 

moisture measurements at the 9-km scale are available from only 6 different sites, all of which 434 

are in North America (Little Washita, Fort Cobb, Little River, South Fork, Kenaston, and 435 

TxSON).  Surface soil temperature measurements at 6am (6pm) are available for 35 (36) 436 

references pixels.  Average metrics across all reference pixels of a given horizontal scale (9-km 437 

or 36-km) are computed using the arithmetic average of the metrics at the individual reference 438 

pixels.  The 95% confidence intervals are first averaged in the same way and then divided by the 439 

square root of the number of different core validation sites contributing to the metric (as listed in 440 

Table 2).  441 

 442 

Table 1 also lists the depths of the shallowest sensors, which are used to validate the L4_SM 443 

surface soil moisture and surface soil temperature estimates.  Moreover, Table 1 provides the 444 

depths of the deepest sensors that contribute to the in situ root-zone soil moisture measurements.  445 

At all reference pixels except Little River and Yanco, the deepest sensors are at 45 cm or 50 cm 446 

depth.  At Little River, the deepest sensors are at 30 cm depth.  At Yanco, the deepest sensors are 447 

installed vertically and centered at depths of 45 cm and 75 cm, representing the 30-60 cm and 448 

60-90 cm layers, respectively.  For many sites, individual sensors tend to drop out temporarily, 449 

which leads to undesirable discontinuities in the reference pixel average soil moisture.  To 450 

mitigate this effect, we require at least 8 individual, complete sensor profiles (after quality 451 
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control) to compute the reference pixel average, provided at least 8 sensor profiles were in the 452 

ground.  For the 17 reference pixels that are based on fewer than 8 sensor profiles, we require 453 

data from all contributing sensor profiles (after quality control) to compute the reference pixel 454 

average.  The time-average number of individual sensors that contribute to any given 36-km 455 

reference pixel average ranges between 6 and 33.2 for surface soil moisture (Table 1), with a 456 

mean value of 15.3 (not shown).  At the 9-km scale, 14 of the 26 surface reference pixels are 457 

based on fewer than 8 individual sensor profiles, while the rest of the 9-km reference pixels have 458 

8 or more sensor profiles each (Table 1), with a mean value of 7.4 across all 9-km reference 459 

pixels (not shown).   460 

 461 

c. Sparse network measurements  462 

The defining feature of sparse network measurements is that there is usually just one sensor (or 463 

profile of sensors) located within a given 9-km EASEv2 grid cell.  The sparse network 464 

measurements used here include data from the USDA Natural Resources Conservation Service 465 

Soil Climate Analysis Network (SCAN; Schaefer et al. 2007), the US Climate Reference 466 

Network (USCRN; Bell et al. 2013; Diamond et al. 2013), the Oklahoma Mesonet (McPherson 467 

et al. 2007), and the OzNet in Australia's Murrumbidgee catchment (Smith et al. 2012).  Note 468 

that for the Australian data, the core validation site and the sparse network results are not 469 

independent because about three quarters of the OzNet sites also contributed to the grid-cell scale 470 

soil moisture measurements of the Yanco reference pixels.   471 

 472 

Table 3 lists the number of sparse network sites with sufficient data after quality control.  Across 473 

all networks, 406 locations have surface and 311 have root-zone soil moisture measurements.  474 
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Most of the sites are in the continental United States, including about 100 each in the USCRN 475 

and SCAN networks, and another 100 in Oklahoma from the Mesonet.  OzNet contributes 42 476 

sites with surface soil moisture measurements, 18 of which also provide root-zone 477 

measurements.  Moreover, Table 3 lists the measurement depths used for computing root-zone 478 

measurements.  For SCAN and USCRN sites, measurements at 50 cm (and occasionally 100 cm) 479 

depth are available.  It is, however, very difficult to take and verify such deeper layer 480 

measurements consistently over long periods of time.  These measurements are therefore not of 481 

the quantity and quality required for L4_SM validation and are not used here.  For OzNet, the 482 

measurements at the 45 cm depth are used as root-zone measurements. 483 

 484 

The sparse network measurements are compared to the L4_SM and NRv4 data from the standard 485 

9-km EASEv2 grid cell that includes the sensor location.  Spatially averaged skill metrics are 486 

calculated by clustering sites geographically to keep densely sampled areas from dominating the 487 

validation metrics and to ensure realistic confidence intervals (De Lannoy and Reichle 2016a). 488 

The number of clusters is estimated a priori after prescribing an average cluster radius of 1.5°, 489 

which is similar to the 1.25° compact support length scale of the L4_SM analysis (section 2d).  490 

The 95% confidence intervals are first averaged in the same way and then divided by the square 491 

root of the number of clusters. 492 

 493 

Sparse network results are grouped into locations with “favorable” or “unfavorable” conditions 494 

for soil moisture estimation from space-borne brightness temperature observations.   Favorable 495 

locations include all areas where the accuracy requirement (section 3a) applies.  Unfavorable 496 

locations include areas where (i) the maximum climatological leaf area index exceeds 5 m2 m-2 497 
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(MODIS 2008), (ii) the predominant land cover is forest, wetland, or urban according to the 498 

International Geosphere-Biosphere Programme (IGBP) DISCover (Loveland et al. 2000) 499 

vegetation classification, (iii) the topography is complex (elevation standard deviation greater 500 

than 71 m), or (iv) the elevation of the sensor location differs by more than 500 m from the mean 501 

elevation of the surrounding 36-km grid cell.  The above grouping is determined using the land 502 

cover, vegetation, and topography parameters of the L4_SM modeling system (Mahanama et al. 503 

2015). 504 

 505 

506 
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4. Results       507 

In this section, we present a detailed, quantitative analysis of the skill of the L4_SM soil 508 

moisture and temperature estimates in reproducing in situ measurements from the core validation 509 

sites (section 4a) and sparse networks (section 4b).  Some of the text in this section is from two 510 

non-peer reviewed project reports (Reichle et al. 2015b, 2016a) and has been updated to reflect 511 

the results obtained for the Version 2 L4_SM product and the longer validation period used here.    512 

 513 

a. Core site validation 514 

In this subsection, we present the validation results using core site measurements.  We first 515 

discuss the soil moisture validation results for three representative reference pixels (Little 516 

Washita, Little River, and South Fork) that exemplify features of the L4_SM estimates and 517 

indicate aspects needing improvement.  For reference, Table 4 lists the metrics for all 43 518 

reference pixels.  Thereafter, we present average soil moisture and temperature metrics across all 519 

reference pixels and demonstrate that the L4_SM product meets its accuracy requirement.  520 

 521 

1) LITTLE WASHITA (OKLAHOMA) 522 

The Little Washita, Oklahoma, site is situated in grasslands in a temperate, sub-humid climate.  523 

Based on several field campaigns that addressed in situ sensor calibration and upscaling (Cosh et 524 

al. 2006), the confidence in the quality of the in situ estimates at this site is very high, and good 525 

product performance at this site is considered to be important.  Figure 2 shows the L4_SM, 526 

NRv4, and in situ time series for the 36-km reference pixel.  (The results for the 9-km reference 527 

pixel at Little Washita are qualitatively similar, but there are long gaps in the in situ 528 

measurements.)  Soil moisture varies considerably during the validation period, owing to the 529 
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exceptionally wet conditions during May 2015 and the very dry conditions in August and 530 

September of both years.  The L4_SM and NRv4 estimates clearly capture the overall variability, 531 

as well as the timing of the major rainstorms.  However, neither the NRv4 nor the L4_SM 532 

estimates fully capture the wet conditions starting in late October 2015 and lasting through the 533 

winter of 2015-2016.  Nevertheless, the time series correlation coefficients are very high, with R 534 

values of 0.81 for L4_SM surface soil moisture and 0.88 for L4_SM root-zone soil moisture, 535 

which is an improvement over the already high values of 0.73 and 0.87 for NRv4 surface and 536 

root-zone soil moisture, respectively (Table 4). 537 

 538 

The improvement is also reflected in the ubRMSE metric, which decreases from 0.037 m3 m-3 for 539 

NRv4 surface soil moisture to 0.033 m3 m-3 for L4_SM, and from 0.029 m3 m-3 for NRv4 root-540 

zone soil moisture to 0.024 m3 m-3 for L4_SM (Table 4).  The improvements are mostly due to 541 

the increased dynamic range and the generally faster dry-downs of the L4_SM estimates 542 

resulting from the assimilation of the SMAP observations, which leads to a better match of the 543 

dry-downs indicated by the in situ measurements.  Bias values are very low for surface soil 544 

moisture (around -0.01 m3 m-3 for L4_SM and NRv4).  Root-zone soil moisture, however, is 545 

generally too dry and somewhat more biased for L4_SM (-0.043 m3 m-3) than for NRv4 (-0.037 546 

m3 m-3).  547 

 548 

2) LITTLE RIVER (GEORGIA) 549 

The Little River, Georgia, site is in a humid agricultural environment, includes a substantial 550 

amount of tree cover, and has sandy soils.  The site is also subject to irrigation and located near 551 

ephemeral, forested wetlands that can flood following rain events, but neither irrigation nor 552 
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wetland processes are considered in the L4_SM modeling system.  As for the Little Washita site, 553 

we show time series for the 36-km reference pixel at Little River (Figure 3) because of gaps in 554 

the in situ measurements at the 9-km reference pixel.  All time series reflect a drop from 555 

somewhat wetter conditions in April and May of both years to drier summer conditions, with 556 

frequent yet typically modest rain events (Figure 3).  The frequent wetting and drying events 557 

shown in the in situ measurements are reasonably captured by the L4_SM and NRv4 estimates, 558 

but the exact timing and magnitude of the storms and dry-downs is less certain.  Moreover, the 559 

tree cover, sandy soils, and irrigation at Little River complicate the modeling of soil moisture 560 

and brightness temperature, resulting in overall slightly lower skill values than for Little 561 

Washita.   562 

 563 

Despite the above complications, NRv4 estimates have reasonable skill, and the assimilation of 564 

SMAP observations again results in skill improvement.  Surface soil moisture has an R value of 565 

0.68 for NRv4, which improves to 0.76 for L4_SM.  The correlation for root-zone soil moisture 566 

is higher, with R values of 0.81 for NRv4 and 0.84 for L4_SM (Table 4).  The assimilation also 567 

improves the ubRMSE values for surface soil moisture estimates from 0.044 m3 m-3 for NRv4 to 568 

0.035 m3 m-3 for L4_SM and for root-zone soil moisture estimates from 0.033 m3 m-3 for NRv4 569 

to 0.025 m3 m-3 for L4_SM.  Bias values are relatively high at ~0.10 m3 m-3 for surface soil 570 

moisture and ~0.07 m3 m-3 for root-zone soil moisture.  The SMAP and SMOS passive soil 571 

moisture retrievals also exhibit a wet bias (Chan et al. 2016b), which may be related to the 572 

ephemeral wetlands in the vicinity of the site.  The wet bias in the NRv4 estimates, however, 573 

suggests that errors in the Catchment model parameters are the main reason for the wet bias in 574 

L4_SM.  575 
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 576 

Figure 3 also reveals residual minor issues with the in situ measurements.  Between May 17 and 577 

June 5, 2015, for example, the reference pixel average root-zone soil moisture shows somewhat 578 

erratic behavior.  In this particular case, bad data from one sensor passed the automated quality 579 

control, and sensors also dropped out repeatedly during the period in question.  The impact of 580 

these residual issues are very minor and do not impact our main conclusions.  581 

 582 

3) SOUTH FORK (IOWA) 583 

South Fork, Iowa, is in a cold climate agricultural region dominated by summer crops of corn 584 

and soybeans.  Conditions in winter are mostly bare soil or stubble, followed by intensive tillage 585 

in early April that creates large surface roughness, which subsequently decreases again with 586 

additional soil treatments and rainfall, and as crops begin to cover the surface.  Such variations in 587 

surface roughness are difficult to capture in the (climatological) microwave RTM parameters of 588 

the L4_SM algorithm and in soil moisture retrieval algorithms in general (Patton and Hornbuckle 589 

2013).  Moreover, at the 9-km and 36-km scales considered here, the land cover is a mix of corn 590 

and soybeans, which usually rotate each year, although there has been a trend toward more corn 591 

in recent years.  By early July, for example, corn typically has a high vegetation water content of 592 

~3 kg m-2 while that of soybeans is typically much smaller (around 0.3 kg m-2) (Jackson et al. 593 

2004).  Finally, owing to the high clay content of the soils in this region, the agricultural fields 594 

are equipped with tiles to improve drainage.  This local feature is not captured in the global-scale 595 

Catchment model of the L4_SM algorithm.  596 

 597 
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Figure 4 shows soil moisture time series for a 9-km reference pixel at South Fork.  Soil moisture 598 

conditions during the warm season are dominated by approximately weekly rain events with 599 

subsequent dry-downs.  The L4_SM surface soil moisture estimates capture this pattern and 600 

present a clear improvement over NRv4, especially in 2016.  This is reflected in the ubRMSE 601 

values, which decrease from 0.070 m3 m-3 for NRv4 to 0.053 m3 m-3 for L4_SM (Table 4).  The 602 

surface soil moisture R value increases considerably from 0.08 for NRv4 to 0.62 for L4_SM.  603 

Root-zone metrics show similar improvements for L4_SM over NRv4, with ubRMSE values 604 

decreasing from 0.044 m3 m-3 for NRv4 to 0.031 m3 m-3 for L4_SM and R values increasing 605 

considerably from 0.03 for NRv4 to 0.58 for L4_SM.  Generally, however, the L4_SM estimates, 606 

and even more so the NRv4 estimates, do not capture the larger dynamic range of the in situ 607 

observations, which may be a reflection of the tile drainage.  Bias values range from 0.075 m3 608 

m-3 for NRv4 surface soil moisture to -0.014 m3 m-3 for L4_SM root-zone soil moisture.  609 

 610 

4) SOIL MOISTURE SUMMARY METRICS 611 

We now discuss the average soil moisture metrics across all reference pixels (section 3b), shown 612 

separately for the 9-km and 36-km reference pixels in Figure 5 (with numerical values listed in 613 

the bottom two rows of Table 4).  The most important result is that the average ubRMSE values 614 

for L4_SM surface soil moisture (0.038 m3 m-3) and root-zone soil moisture (0.030 m3 m-3) at the 615 

9-km scale meet the accuracy requirement of 0.04 m3 m-3.   616 

 617 

For a more in-depth analysis, we first compare the skill of the L4_SM and NRv4 estimates.  For 618 

the ubRMSE and R metrics and at the 9-km and the 36-km scales, the surface soil moisture skill 619 

of L4_SM exceeds that of NRv4 by a statistically significant margin (as indicated by the non-620 
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overlapping confidence intervals; Figure 5).  For example, the 9-km ubRMSE for L4_SM 621 

surface soil moisture is 0.038 m3 m-3, compared to 0.042 m3 m-3 for NRv4.  The corresponding R 622 

values are 0.67 for L4_SM and 0.58 for NRv4.  The average bias is slightly (but not 623 

significantly) worse for L4_SM (0.046 m3 m-3) than NRv4 (0.043 m3 m-3).  The results are 624 

similar for root-zone soil moisture, except here the differences between the L4_SM and NRv4 625 

estimates are not significant (Figure 5).  The 9-km ubRMSE for L4_SM root-zone soil moisture 626 

(0.030 m3 m-3) is slightly lower than that of NRv4 (0.032 m3 m-3), and the R value for L4_SM 627 

(0.70) is higher than that of NRv4 (0.56).  The average root-zone soil moisture bias is 628 

remarkably small and slightly better for L4_SM (0.009 m3 m-3) than NRv4 (0.019 m3 m-3).     629 

 630 

A closer look at the metrics for the individual reference pixels (Table 4) reveals that the 631 

ubRMSE and R metrics are worse for L4_SM than NRv4 at some sites, including Carman and 632 

HOBE.  There could be several reasons why the L4_SM analysis degrades the model-only skill, 633 

including site-specific errors in the radiative transfer modeling.  For example, the L4_SM system 634 

does not account for the heavy dewfall and the variety of different crops at Carman.  At HOBE, 635 

the SMOS-based brightness temperature climatology used for rescaling might be impacted by 636 

radio-frequency interference or by the effect of the land-sea contrast in the interferometric 637 

processing (Al Bitar et al. 2012).  Nevertheless, the L4_SM product has, on balance, higher skill 638 

than NRv4.  The L4_SM root-zone ubRMSE is below the 0.04 m3 m-3 threshold at all 16 (9-km 639 

and 36-km) reference pixels, while the NRv4 ubRMSE exceeds 0.04 m3 m-3 at 2 of the 3 South 640 

Fork reference pixels.  Surface soil moisture estimates from NRv4 fail to meet the 0.04 m3 m-3 641 

threshold at 18 of the 43 reference pixels.  By contrast, L4_SM surface soil moisture estimates 642 

fail to meet the threshold at only 10 of the 43 reference pixels, including 9-km pixels at Yanco, 643 



 30 

Carman, St. Josephs, South Fork, Benin, and TxSON.  This result further illustrates the key role 644 

played by the assimilation of SMAP observations in meeting the L4_SM accuracy requirement 645 

(which applies to the average ubRMSE across all 9-km reference pixels; section 3a).  646 

 647 

Next, we compare the skill values at 9-km reference pixels to those at the 36-km scale.  648 

Generally, the L4_SM and NRv4 skill at 36 km is better for all three metrics than that at 9 km 649 

(Figure 5), which is consistent with the fact that the model forcing data and the assimilated 650 

SMAP brightness temperature observations are all at resolutions of about 30 km or greater.  The 651 

information used to downscale the assimilated information stems only from the land model 652 

parameters, which are at the finer, 9-km resolution.  It is therefore not surprising that the L4_SM 653 

(and NRv4) estimates are more skillful (that is, contain less random error) when averaged to the 654 

36-km scale than at the 9-km scale.  Perhaps the biggest difference between the 36-km and 9-km 655 

reference pixel skill is for the surface soil moisture bias (Figure 5b).  The smaller bias at the 656 

36-km scale is likely also related to the fact that the grid-cell scale in situ measurements for 657 

36-km reference pixels are typically based on more individual sensor locations than those for 658 

9-km reference pixels, resulting in more robust in situ estimates of the true long-term mean 659 

conditions at the 36-km scale.  660 

 661 

Finally, we compare the skill of the surface soil moisture estimates to that of the root-zone 662 

estimates.  Across all scales and metrics and for the L4_SM and NRv4 estimates, the skill of the 663 

root-zone soil moisture estimates is always better than that of the surface estimates (Figure 5).  664 

This result makes sense because there is much more variability in surface soil moisture.  665 

 666 

667 
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5) SOIL TEMPERATURE SUMMARY METRICS 668 

Since the focus of the L4_SM product is on soil moisture, there is no pre-defined accuracy target 669 

for the L4_SM surface soil temperature estimates.  It is nevertheless instructive to assess their 670 

skill (Figure 6; Table 5), especially given the importance of soil temperature for biophysical 671 

processes and the use of L4_SM soil temperature estimates as inputs to the SMAP Level-4 672 

Carbon product (Jones et al. 2017).  The average surface soil temperature metrics for L4_SM and 673 

NRv4 are fairly similar across all categories, with average ubRMSE values ranging from 1.6 to 674 

1.8 K (Figure 6a) and average R values of ~0.97 (Figure 6c) for 9-km and 36-km estimates at 675 

6am and 6pm.  At 6am, surface soil temperature estimates from L4_SM have a slightly lower 676 

ubRMSE than NRv4 (by ~0.1 K) and a slightly higher R value than NRv4 (by ~0.005), but the 677 

differences are not significant.  At 6pm, the L4_SM and NRv4 ubRMSE and R values are 678 

essentially identical.   679 

 680 

Somewhat bigger differences between the various estimates occur for the average bias in surface 681 

soil temperature (Figure 6b).  At 6am, both L4_SM and NRv4 are biased cold, with NRv4 682 

having a larger (negative) bias of around -2.5 K compared to about -1.8 K for L4_SM (at both 683 

the 9-km and 36-km scales).  This 6am cold bias is consistent with a known nighttime cold bias 684 

in the GEOS-5 modeling system (Chan et al. 2016b).  At 6pm, the average bias at the 9-km scale 685 

nearly vanishes for NRv4 (0.1 K), whereas L4_SM still exhibits a distinct cold bias (-1.1 K).  686 

Note that some of the bias at individual sites might also be caused by instrumentation details 687 

such as the vertical or horizontal installation of the sensors, which impacts the exact depths 688 

where the sensors’ thermistors are located.       689 

 690 
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The 36-km average bias shown in Figure 6b includes the extreme values at the Ngari reference 691 

pixel in western Tibet, where the 6pm bias in surface soil temperature is -9.1 K for NRv4 and 692 

-12.5 K for L4_SM (Table 5).  The L4_SM bias at Ngari is not unique for a global modeling 693 

system.  In their Table 3, Su et al. (2013) report a diurnal mean bias of -6.9 K at Naqu (in central 694 

Tibet) for surface soil temperature estimates from the operational system of the European Centre 695 

for Medium-Range Weather Forecasts.  The reasons for the extreme bias in Tibet are complex.  696 

Most importantly, there is a bias in the GEOS-5 radiation and air temperature forcing data used 697 

in the L4_SM system compared to the observation-based data of Chen et al. (2011) (not shown).  698 

This forcing bias is likely compounded by errors in the L4_SM soil texture inputs, soil thermal 699 

parameters, and surface turbulence parameterization (Van der Velde et al. 2009; Zeng et al. 700 

2012; Zheng et al. 2015).  If Ngari is excluded from the 36-km reference pixel average, the 6pm 701 

bias values change from -0.5 K to 0.2 K for NRv4 and from -1.7 K to -0.9 K for L4_SM.  More 702 

generally, the increase in the (absolute) bias in the L4_SM estimates compared to NRv4 is likely 703 

the result of using imperfect brightness temperature rescaling parameters (section 2d), but this 704 

requires further investigation and is left for future study. 705 

   706 

The relatively minor differences between the L4_SM and NRv4 soil temperature metrics (Figure 707 

6) are not surprising.  The L4_SM brightness temperature analysis has been calibrated primarily 708 

for updating the model forecast soil moisture estimates; soil temperature increments are 709 

relatively small by design (De Lannoy and Reichle 2016a).  This strategy mirrors the approach 710 

taken by the SMAP and SMOS (passive) soil moisture retrieval algorithms, which rely on 711 

ancillary soil temperature information that is assumed to be sufficiently accurate to invert 712 

brightness temperature observations into soil moisture estimates.  713 
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 714 

b. Sparse network validation 715 

Figure 7 illustrates the ubRMSE values for the L4_SM estimates at the sparse network sites.  The 716 

gray background shading in the figure also indicates whether a site is within the mask of the 717 

formal accuracy requirement (section 3a).  The resulting delineation (Figure 7) suggests, for 718 

example, that sites in the more topographically complex western United States mountain areas 719 

and in the more densely vegetated portions of the eastern United States fall, as expected, outside 720 

the mask.  Overall, ubRMSE values range from 0.02 m3 m-3 to 0.07 m3 m-3, with generally lower 721 

error values for root-zone soil moisture than for surface soil moisture (Figure 7).  Errors are 722 

generally lowest in dry and mountainous areas in the western United States, where the soil 723 

moisture variability is typically low, thus naturally limiting the ubRMSE values.  The ubRMSE 724 

values at the Australian sites are relatively high both inside and outside the mask (on average, 725 

0.063 m3 m-3 for surface and 0.056 m3 m-3 for root-zone soil moisture), owing primarily to the 726 

large variability in soil moisture in this region.  The R values for the sparse network sites, shown 727 

in Figure 8, range from 0.3 to 0.9, with generally similar correlations for surface and root-zone 728 

soil moisture.  There is no obvious spatial pattern across the US networks or the Australian sites, 729 

although the latter exhibit generally high R values.    730 

 731 

Figure 9 shows the average L4_SM metrics vs. sparse network measurements, broken down by 732 

the exclusion mask of the accuracy requirement (as indicated by the gray shading in Figures 7 733 

and 8).  The figure confirms that the L4_SM ubRMSE values are lower at the sites outside the 734 

mask, with values of 0.049 m3 m-3 for surface soil moisture and 0.040 m3 m-3 for root-zone soil 735 

moisture (Figure 9b, Table 6), compared to 0.054 m3 m-3 and 0.044 m3 m-3 for surface and root-736 
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zone soil moisture, respectively, at sites within the mask (Figure 9a).  Again, this result is related 737 

to the much lower variability of soil moisture in the arid regions of the western United States, 738 

which also happen to lie largely in mountainous terrain.  The result is reversed for the average 739 

bias.  Inside the mask, average bias values are 0.028 m3 m-3 for surface soil moisture and -0.003 740 

m3 m-3 for root-zone soil moisture (Figure 9c), compared to 0.078 m3 m-3 for surface soil 741 

moisture and 0.042 m3 m-3 for root-zone soil moisture, respectively, outside the mask (Figure 742 

9d).  This relative performance is at least partly due to the increased topographical complexity 743 

near many of the sites outside of the mask, which are generally even less representative of the 744 

grid-cell average conditions than are sparse network sites within the mask.  The values for the 745 

time series correlation coefficients generally range between 0.6 and 0.7 and are more similar 746 

inside and outside the mask (Figure 9e,f).  This is expected because the R values are, by 747 

construction, insensitive to bias and to errors in variability.   748 

 749 

Figure 9 also shows the skill of the NRv4 estimates.  The surface soil moisture skill in terms of R 750 

is significantly higher (at the 5% level) for L4_SM than for NRv4, reflecting the additional 751 

information contributed by the assimilation of the SMAP brightness temperature observations in 752 

the L4_SM system both inside and outside of the exclusion mask.  For root-zone soil moisture, 753 

the skill values are very similar for L4_SM and NRv4.  As for the core validation sites, the 754 

typically small differences between L4_SM and NRv4 estimates reflect the fact that the sparse 755 

network measurements are located in areas where the surface meteorological forcing takes 756 

advantage of high-quality, gauge-based precipitation measurements.  Larger improvements from 757 

the assimilation of SMAP observations can be expected in areas where the precipitation forcing 758 
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inputs are not as well informed by gauge measurements, as demonstrated by Bolten and Crow 759 

(2012) for the assimilation of AMSR-E soil moisture retrievals. 760 

 761 

Table 6 further provides average skill metrics broken down by the IGBP land cover classes 762 

(section 3c).  The ubRMSE and R skill of the L4_SM surface and root-zone soil moisture 763 

estimates is better than that of NRv4 for all IGBP classes except for root-zone soil moisture in 764 

grasslands and urban areas, where NRv4 is better than L4_SM (but not significantly).  The bias 765 

values listed in Table 6 suggest that the mean soil moisture from the L4_SM estimates is biased 766 

high (that is, wet) for all land cover classes, with similar mean bias values for NRv4.  This is 767 

particularly true for the forest class, because in situ measurement sites are typically on grassy 768 

areas, regardless of the surrounding land cover.  For the forest class, Table 6 shows that the 769 

L4_SM and NRv4 estimates have the highest bias values, ~0.1 m3 m-3 for surface soil moisture 770 

and 0.055 m3 m-3 for root-zone soil moisture (not considering the higher average root-zone bias 771 

at the three sites in the urban class).  772 

 773 

 774 

 775 

 776 

 777 

778 
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5. Summary and Conclusions   779 

This study provides a brief overview of the SMAP L4_SM algorithm and focuses on the 780 

validation of the L4_SM product using in situ soil moisture and temperature measurements from 781 

core validation sites and sparse networks.  Based on the core validation site results, the L4_SM 782 

estimates of surface and root-zone soil moisture meet the accuracy requirement (ubRMSE ≤ 0.04 783 

m3 m-3).  For surface soil moisture, the ubRMSE is 0.038 m3 m-3 at the 9-km scale and 0.035 m3 784 

m-3 at the 36-km scale.  For root-zone soil moisture, the ubRMSE is 0.030 m3 m-3 at the 9-km 785 

scale and 0.026 m3 m-3 at the 36-km scale (Figure 5).  Through the assimilation of SMAP 786 

brightness temperatures, the L4_SM surface soil moisture estimates are improved significantly 787 

(at the 5% level) compared to model-only NRv4 estimates.  The latter have an ubRMSE of 0.042 788 

m3 m-3 at the 9-km scale and do not meet the L4_SM accuracy requirement.  L4_SM root-zone 789 

soil moisture estimates are also better (but not significantly) than those of NRv4, which have an 790 

ubRMSE of 0.032 m3 m-3 at the 9-km scale.  Similar qualitative results are obtained for the R 791 

metric.   792 

 793 

Surface soil temperature ubRMSE values vs. core validation site measurements range between 794 

1.6 and 1.8 K for 6am and 6pm estimates from L4_SM and NRv4 at the 9-km and 36-km scales 795 

(Figure 6).  The L4_SM estimates show only minor improvements (not significant) of ~0.1 K for 796 

6am (compared to NRv4), with nearly identical 6pm skill values for L4_SM and NRv4.  R 797 

values for surface soil temperature estimates are ~0.97, suggesting that the modeled soil 798 

temperatures adequately capture synoptic and seasonal variations.  The L4_SM product is biased 799 

cold by about -2 K at 6am, which is consistent with a known cold bias in current GEOS-5 800 

products.  In the arid, high-elevation environment at Ngari in western Tibet, however, errors in 801 
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the L4_SM forcing data and modeling system result in a much larger cold bias of -12.5 K for 802 

surface soil temperature at 6pm.        803 

 804 

The sparse network results corroborate the core validation site findings for a greater variety of 805 

climate and land cover conditions (Figure 9).   It is important to keep in mind that the sparse 806 

network skill metrics presented here underestimate the true skill because these metrics are based 807 

on a direct comparison of the L4_SM product against in situ measurements which are subject to 808 

upscaling and other errors.  The same is true, to a lesser extent, for the metrics vs. core validation 809 

site measurements, and Chen et al. (2017) quantified the impact of such errors on the R skill of 810 

soil moisture retrievals.  Therefore, the sparse network ubRMSE values suggest that the L4_SM 811 

estimates would meet the formal accuracy requirement across a very wide variety of surface 812 

conditions, beyond those that are covered by the few core validation sites that have been 813 

available to date for formal verification of the accuracy requirement.  The sparse network results 814 

thus provide additional confidence in the conclusions drawn from the core validation site 815 

comparisons. 816 

 817 

The core validation site and sparse network results both suggest that the L4_SM surface soil 818 

moisture is still biased wet (by 0.02-0.05 m3 m-3, on average), while the root-zone soil moisture 819 

bias is smaller (less than 0.01 m3 m-3 for the core sites, and 0.016 m3 m-3 for the sparse network 820 

sites).  The wet bias in surface soil moisture is consistent with the findings of De Lannoy et al. 821 

(2014b), who introduced the revised soil texture and soil hydraulic parameters used here to 822 

address the even stronger bias in earlier versions of the GEOS-5 modeling system (such as those 823 

used in the MERRA-Land and MERRA-2 reanalysis products).  The development of the L4_SM 824 
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product played an important role in mitigating the bias of GEOS-5 soil moisture estimates, and 825 

work is ongoing to further reduce the remaining bias. 826 

 827 

The skill of the model-only NRv4 estimates (section 2c) rests, to a large degree, on the accuracy 828 

of the precipitation forcing, which relies on the daily, 0.5°, gauge-based CPCU product (except 829 

in Africa and the high latitudes).  For the most part, the soil moisture validation against in situ 830 

measurements is limited to regions that also have relatively accurate precipitation inputs, which 831 

implies that the model-only (NRv4) skill is already relatively high, thereby limiting the potential 832 

improvements that can be obtained from the assimilation of SMAP observations.  In regions with 833 

poor precipitation data, the impact of the SMAP observations should be larger, but the precise 834 

benefit remains unknown in those regions because they also lack soil moisture in situ 835 

measurements suitable for validation.  In future work, we plan to quantify the skill improvement 836 

against model-only estimates that do not benefit from the use of gauge-based precipitation data.   837 

 838 

The NRv4 and L4_SM estimates differ in that the NRv4 estimates are from a single-member 839 

model run without perturbations, whereas the L4_SM estimates are based on an ensemble of 840 

model realizations that experiences perturbations to its model forcing and prognostic variables.  841 

An undesirable, yet at this time unavoidable, side effect of the perturbations regime is that it 842 

leads to biases between the ensemble mean estimates and the estimates from the unperturbed 843 

NRv4 model integration.  This is particularly acute in very arid regions, where the perturbations 844 

in soil moisture are, by construction, biased wet because the unperturbed, single-member model 845 

run often remains at the lowest possible soil moisture value, thereby making negative (that is, 846 

drying) perturbations unphysical.  Some of the differences between the NRv4 and L4_SM 847 
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estimates will therefore partly reflect the impact of the perturbations regime rather than the use 848 

of SMAP observations.  We plan to investigate this issue further by generating a model-only 849 

ensemble run with the same perturbations regime as the L4_SM product but without SMAP 850 

assimilation.  Preliminary results based on a small domain suggest that the relative performance 851 

of the L4_SM estimates and the revised model-only estimates is quite similar to that of L4_SM 852 

and NRv4.    853 

  854 

Our assessment of the Version 2 L4_SM data is still quite limited by the period of record.  The 855 

two years of data that were available for this study do not yet cover a representative range of 856 

inter-annual variability.  As the SMAP observatory and in situ networks continue to provide 857 

additional measurements, the reliability of future assessments will increase.  Moreover, 858 

enhancements in the GEOS-5 modeling system and in the L-band brightness temperature 859 

climatology needed for bias correction are expected to improve the quality of the L4_SM 860 

product.  In particular, the L-band brightness temperature climatology will eventually be based 861 

on SMAP (as opposed to SMOS) observations.  This will improve the brightness temperature 862 

bias correction and permit the use of SMAP data in regions where SMOS observations are 863 

contaminated by radio-frequency interference.   864 

 865 

Finally, the validation of the L4_SM product against in situ measurements must be viewed in 866 

conjunction with other assessments.  For example, Crow et al. (2017) demonstrated for the 867 

south-central US that L4_SM soil moisture estimates have significantly improved utility for 868 

forecasting the streamflow response to future rainfall events (relative to that of soil moisture 869 

retrievals from L-band and higher-frequency Tb observations).  Moreover, Reichle et al. (2016a, 870 
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2017c) evaluate the statistics of the observation-minus-forecast (O-F) residuals and the analysis 871 

increments from the L4_SM algorithm, which are available wherever and whenever SMAP 872 

observations are assimilated, thereby providing a more global perspective of the algorithm’s 873 

performance.      874 

 875 

 876 

877 
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Tables 1125 

 1126 

Min Mean Max Min Mean Max

03013602 41.28 -5.41 36 0.05 8 14.6 17 n/a n/a n/a

03010903 41.42 -5.37 9 0.05 4 4.0 4 n/a n/a n/a

03010908 41.32 -5.27 9 0.05 4 4.0 4 n/a n/a n/a

04013603 43.14 -116.76 36 0.05 8 9.5 11 n/a n/a n/a

04010907 43.19 -116.72 9 0.05 4 4.0 4 n/a n/a n/a

04010910 43.09 -116.81 9 0.05 4 4.0 4 n/a n/a n/a

07013601 -34.85 146.17 36 0.75 9 25.4 28 7 7.0 7

07010902 -34.72 146.13 9 0.05 8 10.2 11 n/a n/a n/a

07010916 -34.98 146.31 9 0.05 8 10.3 11 n/a n/a n/a

09013610 49.61 -97.94 36 0.05 8 17.9 20 n/a n/a n/a

09010906 49.67 -97.98 9 0.05 8 10.1 11 n/a n/a n/a

Ngari China (Tibet) Cold Barren / sparse 12033601 32.41 79.98 36 0.05 6 6.0 6 n/a n/a n/a

16013603 31.68 -110.04 36 0.05 8 10.6 12 n/a n/a n/a

16010906 31.72 -110.09 9 0.05 8 9.6 11 n/a n/a n/a

16010907 31.72 -109.99 9 0.05 8 10.4 11 n/a n/a n/a

16010913 31.83 -110.90 9 0.05 7 7.0 7 n/a n/a n/a

16023602 34.88 -98.09 36 0.45 8 15.5 18 8 13.4 17

16020907 34.92 -98.04 9 0.45 4 4.0 4 4 4.0 4

16033602 35.42 -98.62 36 0.45 8 12.3 13 8 11.1 13

16030911 35.38 -98.57 9 0.45 4 4.0 4 4 4.0 4

16030916 35.29 -98.48 9 0.45 4 4.0 4 4 4.0 4

16043602 31.60 -83.59 36 0.30 8 19.8 23 8 18.6 22

16040901 31.72 -83.73 9 0.30 8 8.0 8 6 6.0 6

St Josephs USA (Indiana) Temperate Croplands 16060907 41.45 -84.97 9 0.05 8 8.2 9 n/a n/a n/a

16073602 42.47 -93.39 36 0.50 8 14.4 15 8 13.1 15

16070909 42.42 -93.53 9 0.50 4 4.0 4 4 4.0 4

16070911 42.42 -93.35 9 0.50 4 4.0 4 4 4.0 4

19023601 -32.96 -62.52 36 0.05 8 10.3 13 n/a n/a n/a

19020902 -33.01 -62.49 9 0.05 5 5.0 5 n/a n/a n/a

25013601 38.47 -121.00 36 0.05 8 17.5 26 n/a n/a n/a

25010911 38.43 -120.95 9 0.05 8 17.5 26 n/a n/a n/a

27013601 51.45 -106.46 36 0.50 8 25.7 28 8 23.1 28

27010910 51.39 -106.51 9 0.05 8 8.0 8 n/a n/a n/a

27010911 51.39 -106.42 9 0.50 8 13.6 14 8 12.2 14

Valencia Spain Cold Savannas woody 41010906 39.57 -1.26 9 0.05 6 6.0 6 n/a n/a n/a

45013601 13.59 3.65 36 0.05 6 6.0 6 n/a n/a n/a

45010902 13.55 2.69 9 0.05 4 4.0 4 n/a n/a n/a

45023601 9.77 1.68 36 0.05 7 7.0 7 n/a n/a n/a

45020902 9.80 1.73 9 0.05 5 5.0 5 n/a n/a n/a

48013601 30.31 -98.78 36 0.50 10 33.2 35 10 26.3 28

48010902 30.43 -98.82 9 0.50 8 9.9 11 8 8.6 10

48010911 30.27 -98.73 9 0.50 8 14.4 15 8 13.7 14

HOBE Denmark Temperate Croplands 67013601 55.97 9.10 36 0.05 8 15.1 21 n/a n/a n/a

Number of Sensors 

(Surface Soil 

Moisture)

Canada 

(Manitoba)

Argentina

Niger

Cold

Temperate

Arid Grassland

Croplands

Croplands

ID Latitude 

[degree]

Longitude 

[degree]

Horizontal 

Scale [km]

Depth of 

Deepest 

Sensor [m]

Climate RegimeSite Name

Kenaston

Niger

Benin

TxSON

Little Washita

Fort Cobb

Little River

South Fork

Monte Buey

Land Cover

Spain

USA

Tonzi Ranch

REMEDHUS

Reynolds Creek

Yanco

Carman

Walnut Gulch

Australia (New 

South Wales)

USA (Arizona)

USA (Oklahoma)

USA (Oklahoma)

Country

Benin

USA (Texas)

Temperate

Arid

Arid

Arid

Temperate

Temperate

Temperate

Cold

Temperate

Cold

USA (Georgia)

USA (Iowa)

USA

Canada 

(Saskatchewan)

Number of Sensors 

(Root Zone Profiles)

Reference Pixel

Grasslands

Tropical

Temperate

Croplands

Grasslands

Cropland / 

natural mosaic

Shrub open

Grasslands

Grasslands

Cropland / 

natural mosaic

Croplands

Savannas woody

Croplands

Savannas 
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TABLE 1.  Core validation sites and reference pixels.  Information for 36-km reference pixels is 1128 

shown in bold. 1129 

1130 
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Horizontal scale 36 km 9 km 36 km 9 km 36 km 9 km 36 km 9 km

Number of different core sites 17 17 7 6 14 12 14 13

Number of reference pixels 17 26 7 9 14 21 14 22

Surface soil moisture

Root zone soil 

moisture

Surface Soil 

Temperature (6am)

Surface Soil 

Temperature (6pm)

 1131 

TABLE 2.  Number of different core sites and number of reference pixels used in the soil moisture 1132 

and temperature validation.  1133 

 1134 

1135 
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 1136 

     

Surface 

Soil 

Moisture

Root Zone 

Soil 

Moisture

SCAN USA 5, 10, 20 135 129

USCRN USA 5, 10, 20 111 87

OK Mesonet Oklahoma 5, 25, 60 118 77

OzNet Australia 4, 45 42 18

406 311

Network Area Sensor 

Depths (cm)

N

All Networks  1137 

TABLE 3.  Overview of sparse networks, with indication of the sensor depths and number of sites 1138 

(N) used here. 1139 

 1140 



 56 

NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval

03013602 36 0.027 0.028 ±0.005 0.068 0.072 ±0.007 0.78 0.77 ±0.08 n/a n/a n/a n/a n/a n/a n/a n/a n/a

03010903 9 0.024 0.029 ±0.005 0.142 0.150 ±0.007 0.52 0.46 ±0.14 n/a n/a n/a n/a n/a n/a n/a n/a n/a

03010908 9 0.035 0.038 ±0.007 0.013 0.015 ±0.009 0.68 0.63 ±0.10 n/a n/a n/a n/a n/a n/a n/a n/a n/a

04013603 36 0.032 0.027 ±0.008 0.025 0.033 ±0.011 0.65 0.78 ±0.18 n/a n/a n/a n/a n/a n/a n/a n/a n/a

04010907 9 0.032 0.031 ±0.010 -0.005 -0.001 ±0.013 0.33 0.45 ±0.26 n/a n/a n/a n/a n/a n/a n/a n/a n/a

04010910 9 0.036 0.029 ±0.018 0.042 0.039 ±0.022 0.62 0.76 ±0.22 n/a n/a n/a n/a n/a n/a n/a n/a n/a

07013601 36 0.065 0.038 ±0.019 0.005 0.036 ±0.025 0.83 0.93 ±0.08 0.017 0.020 ±0.010 -0.100 -0.079 ±0.012 0.89 0.95 ±0.17

07010902 9 0.084 0.057 ±0.017 -0.017 0.010 ±0.023 0.83 0.91 ±0.07 n/a n/a n/a n/a n/a n/a n/a n/a n/a

07010916 9 0.068 0.043 ±0.019 0.028 0.068 ±0.025 0.77 0.91 ±0.10 n/a n/a n/a n/a n/a n/a n/a n/a n/a

09013610 36 0.025 0.038 ±0.004 -0.080 -0.066 ±0.005 0.60 0.45 ±0.10 n/a n/a n/a n/a n/a n/a n/a n/a n/a

09010906 9 0.031 0.050 ±0.005 0.043 0.080 ±0.007 0.53 0.26 ±0.14 n/a n/a n/a n/a n/a n/a n/a n/a n/a

Ngari 12033601 36 0.046 0.037 ±0.017 0.000 0.011 ±0.022 0.78 0.77 ±0.22 n/a n/a n/a n/a n/a n/a n/a n/a n/a

16013603 36 0.033 0.031 ±0.003 0.030 0.039 ±0.005 0.58 0.67 ±0.09 n/a n/a n/a n/a n/a n/a n/a n/a n/a

16010906 9 0.028 0.030 ±0.003 0.019 0.034 ±0.005 0.69 0.68 ±0.08 n/a n/a n/a n/a n/a n/a n/a n/a n/a

16010907 9 0.026 0.031 ±0.003 0.039 0.050 ±0.005 0.68 0.66 ±0.08 n/a n/a n/a n/a n/a n/a n/a n/a n/a

16010913 9 0.036 0.034 ±0.006 0.075 0.081 ±0.009 0.60 0.65 ±0.15 n/a n/a n/a n/a n/a n/a n/a n/a n/a

16023602 36 0.037 0.033 ±0.004 -0.004 -0.015 ±0.006 0.73 0.81 ±0.05 0.029 0.024 ±0.005 -0.037 -0.043 ±0.007 0.87 0.88 ±0.09

16020907 9 0.037 0.034 ±0.006 -0.015 -0.026 ±0.009 0.71 0.78 ±0.07 0.030 0.030 ±0.009 -0.039 -0.043 ±0.012 0.82 0.76 ±0.16

16033602 36 0.038 0.034 ±0.004 0.027 0.028 ±0.005 0.70 0.78 ±0.06 0.024 0.025 ±0.004 0.020 0.025 ±0.005 0.76 0.79 ±0.12

16030911 9 0.043 0.038 ±0.006 0.027 0.033 ±0.008 0.71 0.77 ±0.07 0.029 0.032 ±0.007 0.020 0.031 ±0.009 0.69 0.74 ±0.18

16030916 9 0.039 0.038 ±0.005 -0.004 -0.008 ±0.007 0.60 0.68 ±0.07 0.027 0.030 ±0.006 -0.029 -0.026 ±0.009 0.61 0.62 ±0.22

16043602 36 0.044 0.035 ±0.004 0.102 0.093 ±0.006 0.68 0.76 ±0.09 0.033 0.025 ±0.005 0.073 0.063 ±0.007 0.81 0.84 ±0.11

16040901 9 0.045 0.038 ±0.005 0.128 0.115 ±0.007 0.58 0.64 ±0.13 0.039 0.032 ±0.006 0.125 0.109 ±0.008 0.55 0.65 ±0.20

St Josephs 16060907 9 0.053 0.050 ±0.012 0.111 0.094 ±0.017 0.43 0.60 ±0.25 n/a n/a n/a n/a n/a n/a n/a n/a n/a

16073602 36 0.058 0.044 ±0.008 0.077 0.045 ±0.011 0.23 0.65 ±0.11 0.040 0.031 ±0.006 0.024 -0.012 ±0.009 0.11 0.56 ±0.26

16070909 9 0.064 0.043 ±0.008 0.029 -0.009 ±0.011 0.11 0.71 ±0.12 0.045 0.029 ±0.007 -0.035 -0.081 ±0.010 0.06 0.70 ±0.25

16070911 9 0.070 0.053 ±0.010 0.075 0.039 ±0.013 0.08 0.62 ±0.12 0.044 0.031 ±0.008 0.028 -0.014 ±0.010 0.03 0.58 ±0.29

19023601 36 0.044 0.034 ±0.010 -0.043 -0.035 ±0.014 0.65 0.79 ±0.07 n/a n/a n/a n/a n/a n/a n/a n/a n/a

19020902 9 0.037 0.029 ±0.009 -0.038 -0.025 ±0.012 0.60 0.83 ±0.09 n/a n/a n/a n/a n/a n/a n/a n/a n/a

25013601 36 0.042 0.032 ±0.010 0.029 0.047 ±0.014 0.92 0.95 ±0.06 n/a n/a n/a n/a n/a n/a n/a n/a n/a

25010911 9 0.046 0.037 ±0.011 0.033 0.044 ±0.015 0.90 0.93 ±0.07 n/a n/a n/a n/a n/a n/a n/a n/a n/a

27013601 36 0.038 0.034 ±0.005 0.010 0.012 ±0.007 0.51 0.63 ±0.09 0.020 0.023 ±0.005 -0.043 -0.041 ±0.007 0.53 0.63 ±0.27

27010910 9 0.034 0.035 ±0.009 0.009 0.016 ±0.012 0.61 0.61 ±0.12 n/a n/a n/a n/a n/a n/a n/a n/a n/a

27010911 9 0.040 0.040 ±0.008 -0.020 -0.021 ±0.011 0.56 0.54 ±0.11 0.018 0.023 ±0.003 -0.069 -0.070 ±0.004 0.63 0.63 ±0.18

Valencia 41010906 9 0.025 0.023 ±0.005 0.104 0.109 ±0.007 0.44 0.51 ±0.16 n/a n/a n/a n/a n/a n/a n/a n/a n/a

45013601 36 0.030 0.030 ±0.005 -0.001 0.022 ±0.007 0.40 0.62 ±0.20 n/a n/a n/a n/a n/a n/a n/a n/a n/a

45010902 9 0.032 0.033 ±0.004 0.006 0.030 ±0.006 0.31 0.52 ±0.17 n/a n/a n/a n/a n/a n/a n/a n/a n/a

45023601 36 0.050 0.048 ±0.016 0.059 0.037 ±0.021 0.62 0.66 ±0.20 n/a n/a n/a n/a n/a n/a n/a n/a n/a

45020902 9 0.050 0.047 ±0.016 0.053 0.036 ±0.021 0.68 0.72 ±0.17 n/a n/a n/a n/a n/a n/a n/a n/a n/a

48013601 36 0.041 0.036 ±0.008 0.084 0.086 ±0.010 0.82 0.87 ±0.08 0.036 0.033 ±0.016 0.034 0.038 ±0.020 0.92 0.86 ±0.19

48010902 9 0.039 0.037 ±0.005 0.120 0.121 ±0.007 0.73 0.80 ±0.08 0.032 0.029 ±0.008 0.086 0.092 ±0.010 0.76 0.79 ±0.18

48010911 9 0.049 0.044 ±0.008 0.124 0.127 ±0.011 0.76 0.83 ±0.10 0.028 0.029 ±0.011 0.079 0.083 ±0.014 0.91 0.87 ±0.17

HOBE 67013601 36 0.030 0.035 ±0.008 0.011 -0.004 ±0.010 0.78 0.71 ±0.13 n/a n/a n/a n/a n/a n/a n/a n/a n/a

AVERAGE 36 0.040 0.035 ±0.002 0.023 0.026 ±0.003 0.66 0.74 ±0.03 0.028 0.026 ±0.003 -0.004 -0.007 ±0.004 0.70 0.79 ±0.06

AVERAGE 9 0.042 0.038 ±0.002 0.043 0.046 ±0.003 0.58 0.67 ±0.03 0.032 0.030 ±0.003 0.019 0.009 ±0.004 0.56 0.70 ±0.08
ALL SITES

Bias  [m3m-3] R  [-]

REMEDHUS

Reynolds Creek

Yanco

Site Name

Reference Pixel Surface Soil Moisture Root Zone Soil Moisture

ID

Horiz. 

Scale 

[km]

ubRMSE  [m3m-3] Bias  [m3m-3] R  [-] ubRMSE  [m3m-3]

TxSON

Walnut Gulch

Little Washita

Fort Cobb

Little River

South Fork

Monte Buey

Carman

Tonzi Ranch

Kenaston

Niger

Benin

 1141 

TABLE 4.  Soil moisture metrics at individual reference pixels and (bottom two rows) averaged over 36-km and 9-km reference pixels.    1142 

Information for 36-km reference pixels is shown in bold.  Italics indicate L4_SM metrics.  1143 
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NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval

03013602 36 2.0 1.5 ±1.1 -4.0 -3.4 ±1.3 0.98 0.99 ±0.02 1.4 1.6 ±1.1 -0.7 -2.1 ±1.3 0.99 0.99 ±0.02

03010903 9 2.2 1.8 ±1.2 -4.8 -4.2 ±1.4 0.97 0.98 ±0.03 1.6 2.0 ±1.3 -1.8 -3.3 ±1.5 0.99 0.99 ±0.02
03010908 9 1.7 1.2 ±1.0 -3.8 -3.1 ±1.1 0.98 0.99 ±0.02 1.4 1.4 ±1.2 -0.2 -1.6 ±1.3 0.99 0.99 ±0.03

04013603 36 1.6 1.8 ±1.9 -0.2 1.5 ±1.9 0.98 0.98 ±0.05 1.8 1.6 ±1.7 2.5 0.9 ±1.8 0.98 0.98 ±0.04

04010907 9 1.4 1.7 ±1.6 0.3 2.2 ±1.6 0.98 0.98 ±0.04 1.7 1.5 ±1.6 2.4 0.7 ±1.7 0.98 0.98 ±0.04

04010910 9 2.5 2.5 ±3.2 -2.5 -1.1 ±3.1 0.96 0.96 ±0.07 2.3 2.3 ±2.7 0.1 -0.9 ±2.7 0.96 0.96 ±0.07

07013601 36 1.8 1.5 ±0.7 -3.5 -2.2 ±0.8 0.97 0.98 ±0.02 1.6 1.6 ±0.6 0.7 -0.5 ±0.8 0.98 0.98 ±0.01

07010902 9 1.9 1.4 ±0.6 -3.1 -1.8 ±0.8 0.97 0.98 ±0.02 1.7 1.6 ±0.5 1.6 0.3 ±0.7 0.98 0.98 ±0.02

07010916 9 2.6 1.8 ±0.8 -4.2 -2.9 ±1.0 0.96 0.98 ±0.03 1.7 1.6 ±0.5 0.5 -0.8 ±0.7 0.98 0.98 ±0.02

09013610 36 2.6 2.6 ±0.9 -3.1 -2.6 ±1.2 0.93 0.93 ±0.06 2.2 2.2 ±0.9 1.4 0.3 ±1.1 0.95 0.95 ±0.05

09010906 9 2.8 2.7 ±1.0 -3.2 -2.8 ±1.3 0.93 0.93 ±0.07 2.3 2.2 ±0.9 1.2 0.0 ±1.2 0.95 0.95 ±0.05

Ngari 12033601 36 2.4 2.0 ±1.6 -5.2 -3.6 ±1.9 0.90 0.92 ±0.27 2.8 2.4 ±0.8 -9.1 -12.5 ±1.1 0.89 0.90 ±0.12

16013603 36 1.4 1.2 ±0.5 -1.7 -1.5 ±0.6 0.98 0.99 ±0.02 1.6 1.7 ±0.5 0.2 -2.1 ±0.7 0.98 0.98 ±0.02

16010906 9 1.7 1.4 ±0.6 -1.9 -1.7 ±0.7 0.97 0.98 ±0.02 1.9 1.9 ±0.6 1.0 -1.5 ±0.8 0.98 0.98 ±0.02

16010907 9 1.4 1.3 ±0.6 -3.1 -2.8 ±0.7 0.98 0.99 ±0.02 1.7 1.7 ±0.6 0.2 -2.2 ±0.8 0.98 0.98 ±0.02

16010913 9 2.0 1.6 ±1.5 -3.0 -2.6 ±1.7 0.98 0.99 ±0.06 2.1 2.3 ±1.1 -0.3 -2.6 ±1.4 0.98 0.98 ±0.04

16023602 36 1.6 1.8 ±1.0 -2.3 -1.7 ±1.2 0.98 0.98 ±0.02 1.8 1.8 ±1.2 0.2 -0.5 ±1.4 0.98 0.98 ±0.02

16020907 9 1.5 1.6 ±1.0 -2.1 -1.5 ±1.2 0.98 0.98 ±0.02 1.7 1.7 ±1.1 0.2 -0.6 ±1.3 0.98 0.98 ±0.03

16033602 36 1.5 1.5 ±0.9 -2.3 -1.8 ±1.0 0.98 0.99 ±0.02 1.7 1.7 ±0.9 0.3 -0.6 ±1.1 0.98 0.98 ±0.02

16030911 9 1.3 1.3 ±0.7 -1.8 -1.4 ±0.9 0.99 0.99 ±0.01 1.5 1.5 ±0.9 0.4 -0.5 ±1.1 0.99 0.99 ±0.02

16030916 9 1.4 1.5 ±1.4 -1.7 -1.0 ±1.5 0.97 0.98 ±0.04 1.4 1.4 ±1.4 0.8 0.0 ±1.5 0.98 0.98 ±0.05

16043602 36 1.5 1.5 ±0.6 -3.0 -1.8 ±0.8 0.98 0.99 ±0.01 1.7 1.5 ±0.7 -0.8 -1.7 ±0.9 0.98 0.98 ±0.02

16040901 9 1.7 1.6 ±0.6 -2.9 -1.8 ±0.8 0.98 0.99 ±0.01 1.8 1.7 ±0.8 -1.1 -1.9 ±1.0 0.98 0.98 ±0.02

St Josephs 16060907 9 1.6 1.5 ±0.9 -2.0 -1.3 ±1.1 0.97 0.98 ±0.02 1.6 1.5 ±0.8 -0.2 -0.9 ±1.0 0.98 0.98 ±0.02

16073602 36 1.6 1.6 ±1.0 -2.3 -1.5 ±1.1 0.98 0.98 ±0.02 1.7 1.7 ±1.1 -0.2 -0.9 ±1.3 0.98 0.98 ±0.02

16070909 9 1.4 1.4 ±0.7 -2.0 -1.2 ±0.9 0.98 0.98 ±0.02 1.5 1.5 ±0.8 0.0 -0.6 ±1.0 0.98 0.98 ±0.02

16070911 9 1.6 1.5 ±0.8 -2.4 -1.7 ±1.0 0.98 0.98 ±0.02 1.6 1.6 ±1.0 -0.3 -0.9 ±1.2 0.98 0.98 ±0.02

19023601 36 1.2 1.2 ±0.4 -2.6 -2.6 ±0.5 0.97 0.97 ±0.02 1.6 1.7 ±0.5 -0.9 -1.9 ±0.7 0.96 0.96 ±0.03

19020902 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a 1.4 1.8 ±0.7 0.3 -1.2 ±0.8 0.97 0.94 ±0.05

25013601 36 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

25010911 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

27013601 36 1.3 1.4 ±0.9 -1.5 -1.0 ±1.0 0.98 0.97 ±0.03 2.1 1.9 ±1.2 1.5 0.5 ±1.4 0.95 0.96 ±0.05

27010910 9 1.3 1.0 ±0.6 -1.6 -1.1 ±0.7 0.98 0.99 ±0.02 1.8 1.5 ±0.6 0.7 -0.3 ±0.8 0.97 0.98 ±0.03

27010911 9 1.3 1.3 ±0.9 -1.7 -1.2 ±1.0 0.98 0.97 ±0.03 2.1 1.8 ±1.0 0.9 -0.1 ±1.2 0.95 0.96 ±0.04

Valencia 41010906 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

45013601 36 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

45010902 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

45023601 36 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

45020902 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

48013601 36 1.1 1.1 ±0.3 -2.0 -1.4 ±0.4 0.99 0.99 ±0.01 1.6 1.5 ±0.6 -0.8 -1.8 ±0.7 0.98 0.98 ±0.02

48010902 9 1.3 1.2 ±0.4 -2.7 -2.2 ±0.5 0.98 0.99 ±0.01 1.8 1.7 ±0.7 -1.6 -2.6 ±0.9 0.98 0.98 ±0.02

48010911 9 1.3 1.2 ±0.4 -2.3 -1.8 ±0.5 0.98 0.99 ±0.01 2.1 2.1 ±0.8 -1.9 -2.9 ±1.0 0.98 0.98 ±0.02

HOBE 67013601 36 1.0 1.2 ±0.5 -1.1 -0.4 ±0.7 0.98 0.98 ±0.02 1.1 1.2 ±0.6 -0.8 -1.5 ±0.8 0.98 0.98 ±0.03

AVERAGE 36 1.6 1.6 ±0.2 -2.5 -1.7 ±0.3 0.97 0.97 ±0.01 1.8 1.7 ±0.2 -0.5 -1.7 ±0.3 0.97 0.97 ±0.01

AVERAGE 9 1.7 1.6 ±0.3 -2.5 -1.8 ±0.3 0.98 0.98 ±0.01 1.8 1.7 ±0.3 0.1 -1.1 ±0.3 0.98 0.98 ±0.01
ALL SITES

TxSON

Kenaston

Niger

Benin

South Fork

Monte Buey

Tonzi Ranch

Little Washita

Fort Cobb

Little River

Yanco

Carman

Walnut Gulch

REMEDHUS

Reynolds Creek

R  [-] ubRMSE  [K] Bias  [K]

Site Name

Reference Pixel Surface Soil Temperature (6am) Surface Soil Temperature (6pm)

ID

Horiz. 

Scale 

[km]

ubRMSE  [K] Bias  [K] R  [-]
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TABLE 5.  As in Table 4 but for soil temperature metrics.1145 
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 1146 

 1147 

 1148 

NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval NRv4

L4_SM 

Vv2030

95% 

Conf. 

Interval

Forests (IGBP 1-5) 41 0.056 0.054 ±0.005 0.104 0.103 ±0.004 0.64 0.65 ±0.03 34 0.047 0.045 ±0.005 0.055 0.055 ±0.005 0.62 0.64 ±0.08

Open shrublands (IGBP 7) 27 0.037 0.034 ±0.003 0.016 0.030 ±0.003 0.66 0.71 ±0.03 20 0.028 0.026 ±0.005 -0.008 0.006 ±0.004 0.66 0.63 ±0.09

Woody savannas (IGBP 8) 28 0.065 0.059 ±0.008 0.069 0.060 ±0.006 0.65 0.70 ±0.05 23 0.054 0.048 ±0.010 0.037 0.025 ±0.013 0.68 0.70 ±0.13

Grasslands (IGBP 10) 177 0.053 0.051 ±0.003 0.026 0.031 ±0.003 0.65 0.69 ±0.02 130 0.041 0.042 ±0.006 -0.014 -0.007 ±0.007 0.72 0.69 ±0.07

Croplands (IGBP 12) 83 0.060 0.057 ±0.003 0.026 0.022 ±0.004 0.60 0.64 ±0.03 60 0.046 0.046 ±0.005 0.007 0.004 ±0.005 0.65 0.65 ±0.07

Urban/built-up (IGBP 13) 4 0.080 0.071 ±0.017 0.027 0.006 ±0.015 0.49 0.62 ±0.11 3 0.047 0.049 ±0.020 0.046 0.032 ±0.019 0.64 0.63 ±0.32

Crop/natural (IGBP 14) 39 0.060 0.057 ±0.003 0.033 0.027 ±0.003 0.66 0.70 ±0.02 36 0.048 0.045 ±0.003 0.008 0.002 ±0.004 0.66 0.69 ±0.06

Barren/sparse (IGBP 16) 2 0.033 0.026 ±0.005 0.004 0.016 ±0.004 0.61 0.70 ±0.08 1 0.016 0.017 ±0.020 -0.028 -0.031 ±0.014 0.95 0.92 ±0.35

Inside mask 279 0.056 0.054 ±0.002 0.030 0.028 ±0.002 0.64 0.67 ±0.02 206 0.045 0.044 ±0.003 -0.001 -0.003 ±0.003 0.66 0.66 ±0.04

Outside mask 127 0.052 0.049 ±0.003 0.074 0.078 ±0.002 0.64 0.67 ±0.02 105 0.041 0.040 ±0.004 0.040 0.042 ±0.004 0.65 0.65 ±0.05

Average (all sites) 406 0.054 0.052 ±0.002 0.050 0.051 ±0.002 0.64 0.67 ±0.01 311 0.044 0.042 ±0.002 0.016 0.016 ±0.003 0.66 0.66 ±0.03

Num- 

ber of 

sites

ubRMSE  [m3m-3] Bias  [m3m-3] R  [-]

Num- 

ber of 

sites

Sparse Network Subset

Surface Soil Moisture Root Zone Soil Moisture

ubRMSE  [m3m-3] Bias  [m3m-3] R  [-]

 1149 

TABLE 6.  Sparse network metrics by land cover (IGBP class) and by the mask of the L4_SM core validation site accuracy requirement 1150 

(section 3c).  Italics indicate L4_SM metrics.  Averages are based on a clustering algorithm (section 3c). 1151 

 1152 
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Figure Captions 1153 

 1154 

Fig. 1.  Schematic of the L4_SM algorithm and data product.  See section 2 for details and 1155 

abbreviations. 1156 

 1157 

Fig. 2.  (a) Surface soil moisture from (black solid line) L4_SM Vv2030, (light blue solid line) 1158 

NRv4, and (red dots) in situ measurements at the 36-km Little Washita reference pixel 1159 

#16023602.   (b) As in (a) but for root-zone soil moisture.  See Table 4 for performance metrics. 1160 

 1161 

Fig. 3.  As in Figure 2 but for the 36-km Little River reference pixel #16043602. 1162 

 1163 

Fig. 4.  As in Figure 2 but for the 9-km South Fork reference pixel #16070911. 1164 

 1165 

Fig. 5.  (a) ubRMSE (m3 m-3), (b) bias (m3 m-3), and (c) R (dimensionless) for L4_SM Vv2030 1166 

and NRv4 surface and root-zone soil moisture vs. core validation site measurements, averaged 1167 

across all 9-km and 36-km reference pixels.  Error bars indicate 95% confidence intervals.  The 1168 

thick horizontal line in panel (a) represents the L4_SM accuracy requirement of ubRMSE ≤ 0.04 1169 

m3 m-3. 1170 

 1171 

Fig. 6.  As in Figure 5 but for surface soil temperature at 6am and 6pm, with ubRMSE and bias 1172 

in K.  1173 

 1174 
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Fig. 7.  ubRMSE (m3 m-3) vs. sparse network measurements for L4_SM Vv2030 (a,b) surface 1175 

and (c,d) root-zone soil moisture.  (a,c) United States sites include (circles) SCAN, (inverted 1176 

triangles) USCRN, and (squares) OK Mesonet.  (b,d) Australian sites are from OzNet.  Gray 1177 

shading indicates areas with low or modest vegetation cover and topographic complexity that are 1178 

within the mask of the SMAP accuracy requirement (section 3c). 1179 

 1180 

Fig. 8.  As in Figure 7 but for the time series correlation coefficient R (dimensionless). 1181 

 1182 

 1183 

Fig. 9.  (a,b) ubRMSE (m3 m-3), (c,d) bias (m3 m-3), and (e,f) R (dimensionless) for L4_SM 1184 

Vv2030 and NRv4 surface and root-zone soil moisture vs. sparse network measurements, 1185 

averaged across sites (a,c,e) within the mask and (b,d,f) outside the mask shown by the gray 1186 

shading in Figures 7 and 8.  Averages are based on a clustering algorithm (section 3c).  Error 1187 

bars indicate 95% confidence intervals. 1188 

 1189 

1190 
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 1191 

Figures 1192 

 1193 

 1194 

Fig. 1.  Schematic of the L4_SM algorithm and data product.  See section 2 for details and 1195 

abbreviations.1196 
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 1197 

Fig. 2.  (a) Surface soil moisture from (black solid line) L4_SM Vv2030, (light blue solid line) NRv4, and (red dots) in situ 1198 

measurements at the 36-km Little Washita reference pixel #16023602.   (b) As in (a) but for root-zone soil moisture.  See Table 4 for 1199 

performance metrics.1200 
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 1201 

Fig. 3.  As in Figure 2 but for the 36-km Little River reference pixel #16043602. 1202 

1203 
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 1204 

Fig. 4.  As in Figure 2 but for the 9-km South Fork reference pixel #16070911. 1205 



 65 

 1206 

Fig. 5.  (a) ubRMSE (m3 m-3), (b) bias (m3 m-3), and (c) R (dimensionless) for L4_SM Vv2030 1207 

and NRv4 surface and root-zone soil moisture vs. core validation site measurements, averaged 1208 

across all 9-km and 36-km reference pixels.  Error bars indicate 95% confidence intervals.  The 1209 

thick horizontal line in panel (a) represents the L4_SM accuracy requirement of ubRMSE ≤ 0.04 1210 

m3 m-3. 1211 



 66 

 1212 

Fig. 6.  As in Figure 5 but for surface soil temperature at 6am and 6pm, with ubRMSE and bias 1213 

in K.  1214 

1215 
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 1216 

Fig. 7.  ubRMSE (m3 m-3) vs. sparse network measurements for L4_SM Vv2030 (a,b) surface 1217 

and (c,d) root-zone soil moisture.  (a,c) United States sites include (circles) SCAN, (inverted 1218 

triangles) USCRN, and (squares) OK Mesonet.  (b,d) Australian sites are from OzNet.  Gray 1219 

shading indicates areas with low or modest vegetation cover and topographic complexity that are 1220 

within the mask of the SMAP accuracy requirement (section 3c). 1221 

 1222 

1223 
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 1224 

Fig. 8.  As in Figure 7 but for the time series correlation coefficient R (dimensionless). 1225 

 1226 

1227 
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 1228 

Fig. 9.  (a,b) ubRMSE (m3 m-3), (c,d) bias (m3 m-3), and (e,f) R (dimensionless) for L4_SM 1229 

Vv2030 and NRv4 surface and root-zone soil moisture vs. sparse network measurements, 1230 

averaged across sites (a,c,e) within the mask and (b,d,f) outside the mask shown by the gray 1231 

shading in Figures 7 and 8.  Averages are based on a clustering algorithm (section 3c).  Error 1232 

bars indicate 95% confidence intervals. 1233 


